用于感知网络的节点数量正在迅速增长,导致感知终端和计算单元之间交换大量冗余数据。为了有效地处理如此大量的数据,并降低功耗,有必要开发在感觉网络附近或内部运行的计算方法,这样可以减少感知和处理单元之间的 ...
文章链接:https://doi.org/10.1038/s41928-020-00501-9 传感-计算架构 摘要 用于感知网络的节点数量正在迅速增长,导致感知终端和计算单元之间交换大量冗余数据。为了有效地处理如此大量的数据,并降低功耗,有必要开发在感觉网络附近或内部运行的计算方法,这样可以减少感知和处理单元之间的冗余数据移动。在这里,我们研究了近传感器计算和传感器内计算的概念,其中计算任务部分移动到感觉终端。我们将功能分为低层处理和高层处理,并讨论了针对不同物理传感系统的近传感器计算和传感器内计算的实现。我们还分析了该领域存在的挑战,并提供了可能的解决方案,以集成传感和处理单元的硬件实施先进制造技术。 The number of nodes typically used in sensory networks is growing rapidly, leading to large amounts of redundant data being exchanged between sensory terminals and computing units. To efficiently process such large amounts of data, and decrease power consumption, it is necessary to develop approaches to computing that operate close to or inside sensory networks, and that can reduce the redundant data movement between sensing and processing units. Here we examine the concept of near-sensor and in-sensor computing in which computation tasks are moved partly to the sensory terminals. We classify functions into low-level and high-level processing, and discuss the implementation of near-sensor and in-sensor computing for different physical sensing systems. We also analyse the existing challenges in the field and provide possible solutions for the hardware implementation of integrated sensing and processing units using advanced manufacturing technologies. |