近日,中国科学院微电子研究所博士生李悦、卢吉凯和尚大山研究员以题为“Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing”在知名期刊Adv. Mater.上发表了一篇文章。他们介 ...
背景 与生物神经系统具有很大相似性的脉冲神经网络(SNNs)有望处理时空信息,并能为物联网和边缘计算提供实时和高能效的计算范式。非挥发性电解质栅控晶体管(EGTs)具有突出的模拟开关性能(突触器件最关键的特性),最近被证明是一种很有前途的突触器件。然而高性能的、大规模的EGT阵列以及EGT在SNN中用于时空信息处理的应用仍需要进一步的验证。 摘要 与生物神经系统具有很大相似性的尖神经元网络(SNNs)有望处理时空信息,并能为物联网和边缘计算提供高时间和能量效率的计算范例。非挥发性电解液门控晶体管(EGTs)提供了突出的模拟开关性能,这是突触元件最关键的特性,最近已被证明是一种很有前途的突触器件。然而,高性能、大规模EGT阵列以及EGT在SNN中用于时空信息处理的应用还有待证明。在这里,一种氧化物基EGT采用非晶态Nb2O5和LixSiO2分别作为通道和电解质栅材料,并集成到一个32×32 EGT阵列中。设计的EGTs具有准线性更新、良好的续航能力(106)和保持能力、100纳秒的高开关速度、超低读出电导(<100纳秒)和超低面积开关能量密度(20 fJ时m−2)。突出的模拟交换性能被用于具有时空信息处理能力的SNN的硬件实现,其中具有不同时序的脉冲序列能够被EGT阵列有效地学习和识别。最后,基于EGT的时空信息处理被部署在触觉感知系统中检测移动方向。这些结果为基于氧化物的EGT设备提供了一种洞察,用于能源效率神经形态计算,以支持边缘应用。 Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (<100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application. |