近日,来自密西根大学的研究团队设计了一种没有纳米细丝的确定性非易失性性电阻性存储单元。通过利用三维体中所有点缺陷的统计集合行为进行信息存储,他们解决了一直困扰着基于灯丝的忆阻器的随机开关的挑战。这项工 ...
背景 尽管基于CMOS的数字存储器和处理器在计算方面取得了巨大的进步,但它们可能不是满足未来计算需求的最佳选择。由于需要在内存和处理器之间移动信息,包括机器学习和人工神经网络在内的数据密集型操作的能量消耗特别大。另一方面,模拟神经形态计算能够直接在内存元件上处理信息,从而绕过这一瓶颈,使这类系统的能源效率提高了数百倍。完全连接和卷积神经网络的神经形态计算架构已经被开发出来。尽管对诸如导电桥随机存取存储器、铁电存储器、相变存储器等存储器技术进行了大量的研究,但寻找一种CMOS兼容的模拟非挥发性存储器元件或人工突触,具有精确和高效的开关,仍然是一个难以实现的目标。 摘要 随着计算需求和能源消耗的快速增长,数字计算正接近其物理极限。基于模拟忆阻的神经形态计算可以在深度神经网络等数据密集型任务中提高数量级的能源效率,但由于模拟忆阻器的不准确和不可预测的切换而受到限制。电阻性丝状随机存取存储器(RRAM)由于纳米尺寸灯丝中离散缺陷的随机运动而产生随机开关。在本研究中,通过结合固体电解质中间层(在本研究中是钇稳定的氧化锆(YSZ))来消除细丝,克服了随机性。无灯丝、体‐RRAM电池使用体点缺陷浓度来存储模拟状态,从而产生可预测的开关,因为即使在单个缺陷是随机的情况下,氧空位缺陷的统计总体行为也是确定的。实验和建模都表明,使用TiO2‐X开关层和YSZ电解液的块状RRAM器件可以产生确定性和线性模拟开关,从而实现有效的推理和训练。Bulk‐RRAM解决了记忆电阻器不可预测性的许多突出问题,这些问题抑制了商业化,因此,可以实现前所未有的高效能源神经形态计算的新应用。除了RRAM之外,这项工作还展示了如何利用离子材料中的体积点缺陷来设计确定性纳米电子材料和器件。 Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue‐memory‐based neuromorphic computing can be orders of magnitude more energy efficient at data‐intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer‐sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria‐stabilized zirconia (YSZ), toward eliminating filaments. Filament‐free, bulk‐RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk‐RRAM devices using TiO2‐X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk‐RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy‐efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices. |