类脑芯片咨询 门户 论文 查看内容

PRA|基于短时程可塑性自旋电子器件的预测跟踪实现

luoluo 2020-11-21 21:49

摘要在当前的人工智能技术中,对认知任务中的高速对象进行实时跟踪是具有挑战性的,因为数据处理和计算非常耗时,从而导致了强制性的时间延迟。受大脑的工作机制启发连续吸引神经网络(CANN)可用于跟踪快速移动的目 ...

摘要

在当前的人工智能技术中,对认知任务中的高速对象进行实时跟踪是具有挑战性的,因为数据处理和计算非常耗时,从而导致了强制性的时间延迟。受大脑的工作机制启发连续吸引神经网络(CANN)可用于跟踪快速移动的目标,如果网络中的动态突触具有短期可塑性,则可以固有地补偿时间延迟。在这里,我们显示可以通过磁性隧道结实现具有短期突触可塑性的突触,该器件在完全应用的数学模型中完美地再现了突触权重的动态。然后,将这些动态突触合并到一维和二维CANN中,这表明它们具有通过微磁模拟预测运动对象的能力。这种用于神经形态计算的基于自旋电子学的便携式硬件无需培训,因此对于移动目标的跟踪技术非常有前途。

Real-time tracking ofhigh-speed objects in cognitive tasks is challenging in the present artificial intelligence techniques because the data processing and computation are time consuming, resulting in impeditive time delays. A brain-inspired continuous attractor neural network (CANN) can be used to track fast moving targets, where the time delays are intrinsically compensated if the dynamical synapses in the network have short-term plasticity. Here, we show that synapses with short-term depression can be realized by a magnetic tunnel junction, which perfectly reproduces the dynamics of the synaptic weight in a widely applied mathematical model. Then, these dynamical synapses are incorporated into one-dimensional and two-dimensional CANNs, which are demonstrated to have the ability to predict a moving object via micromagnetic simulations. This portable spintronics-based hardware for neuromorphic computing needs no training and is therefore very promising for the tracking technology of moving targets.

图1 一维连续吸引子神经网络以及基于隧道结的硬件实现示意图

图2 二维连续吸引子神经网络示意图



鲜花
鲜花
握手
握手
雷人
雷人
路过
路过
鸡蛋
鸡蛋
分享至 : QQ空间
收藏
来自: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.044060